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Abstract-Thermal analysis is carried out for split-flow heat exchangers with an even number of tube 
passes, arbitrary entrance and exit locations of the shellside flow, arbitrary division of the shellside fluid 
and variable NTU. A closed form solution is presented for calculating the temperature at a given position 
and the thermal effectiveness. The thermal performance of the split-flow exchanger is compared with that 
of the conventional shell and tube exchanger. The shellside pressure drop and the optimum entrance and 

exit locations of the shellside flow in the split-flow exchanger are discussed. 

1. INTRODUCTION 

SPLIT-flow heat exchangers, designated as G-type in 
the TEMA Standards [l], find extensive application 
in industry because of their heat transfer and pressure 
drop characteristics superior to conventional shell and 
tube heat exchangers. Schindler and Bates [2] dis- 
cussed these merits of the split-flow exchanger and 
presented the relationships among the thermal 
effectiveness, NTU and the thermal flow rate ratio 
R for two tube pass and one shell pass exchangers. 
Governing equations for heat transfer in a split-flow 
exchanger with four tube passes were derived by Singh 
and Holtz [3], who made a comparison of the thermal 
performance between two tube pass and four tube 
pass split-flow exchangers [4]. Murty carried out analy- 
sis about heat transfer characteristics of one and two 
tube pass exchangers with the split-flow pattern on 
the shellside in another arrangement [5]. In all these 
papers, such presumptions as constant NTU through 
the whole exchanger, the even division of the shellside 
flow and the middle entrance location of the shellside 
fluid were used. Also, these results were limited to the 
especially given number of tube passes, respectively. 

The purposes of this paper are to present governing 
equations for N tube passes and one shell pass 
(referred to as 1 -N) split-flow exchangers and for- 
mulas for calculating temperatures at a given location, 
the thermal effectiveness and the mean temperature 
difference correction factor with arbitrary divisions 
and variable entrance and exit locations of the shell- 
side flow as well as piecewise change of the overall 
heat transfer coefficient. The influence of the division 
of the shellside fluid upon the pressure loss and the 
optimum entrance and exit locations will be discussed. 
The system of equations will be solved by means of 
matrix expression. 

2. FORMULATION 

In split-flow exchangers, the whole heat transfer 
area is divided into four subregions by a longitudinal 

baffle, as shown in Fig. 1. Obviously, temperatures in 
each subregion are governed by separate equations. 
To develop a general coordinate system, the origin is 
always set at the location where the tubeside fluid 
enters the heat exchanger. The following dimension- 
less variables and parameters are introduced to facili- 
tate the analysis : 

dimensionless flow path coordinate 

1 ai a 
XEtzx-; 

dimensionless temperatures 

thermal flow rate ratio 

RI+, R2+ 
2 I 

division ratio of the shellside fluid 

number of transfer units 

dimensionless temperature change 

e; -e; @i-e; 
PI =$yf2’ p2=8T_B;; 

NTU ratio for tube pass i 

WA), WTf-J2), E-=-C- 
UA NTU:, 

According to the definition of the above dimensionless 
parameters, the following relationships occur : 
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NOMENCLATURE 

a heat transfer surface area along the &O, logarithmic mean temperature difference 
flow path [m*] t dimensionless temperature of the 

A total heat transfer surface area of the tubeside fluid 
exchanger [m ‘1 T dimensionless temperature of the 

A, B, C, D coefficient matrices shellside fluid 
ch, cf coefficients T dimensionless temperature vector 
D equivalent transverse diameter of the u overall heat transfer coefficient 

shellside flow tunnel [m] ~rn~*K~‘] 
d equivalent transverse diameter defined by I#’ thermal flow rate [W K ‘1 

equation (48) [m] x dimensionless coordinate 
E,, Fi, Gi, Hi eigenvectors Y,, . *. , Y, functions defined by equation 
F mean temperature difference correction (33) 

factor z coefficient vector defined by equation 
e,, J;., gj, hi constant coefficients to be (34). 

determined 

I unit matrix Greek symbols 

I flow location of fluid [m] constant coefficient 
L length of tubes [m] ; division ratio of the shellside fluid 
m number of tube passes above the 4 ratio of (NTU,), in tube pass i to the total 

longitudinal baffle NTU, of the exchanger 
n number of tube passes below the e temperature [K] 

longitudinal baffle I eigenvalue 

iv total number of tube passes, m + n p , , p 2 constant coefficients 
NTU number of transfer units fJ constant coefficient 
G(X) function defined by equation (3 1) w velocity of the shellside fluid 

Pi,..*, pk vectors defined by equation (32) [ms-‘I. 
P dimensionless temperature change 

through the exchanger Subscripts 
AP pressure drop [N m- ‘1 a, b, c, d subregions a, b, c and d, 

Q coefficient matrix defined by equation respectively 

(34) 1,s shellside 
b, r, s, u coefficients 2 tubeside 
R ratio of thermal flow rates j, k order number of elements of matrices. 

s coefficient vector defined by equation 

(34) Superscripts 
t ,.,+ , intermediate temperature of the tubeside ’ inlet 

fluid I, outlet 

At, true mean temperature difference * conventional shell and tube exchanger. 

&=l (1) 
heat transfer coefficient is assumed to be constant in 

/= I a pass in each subregion, but it may vary with passes 

because of 

UA = 1 (UA), (2) 
I= I 

and #Ia+ PC = 1 as well as 

p, NTU, -_=_= 
p2 NTUz 

In the analysis the major assumptions are made as 

follows : 

(1) The shellside fluid is completely mixed at any 
cross-section of its nominal flow path and no by- 

passing occurs. 
(2) Piecewise constant heat transfer coefficient : the 

and subregions. 
(3) There is no phase change and heat losses are 

negligible. 
(4) Specific heat capacities are constant throughout 

the exchanger. 

The whole heat exchange region is divided into sub- 
regions a, b, c and d. The corresponding temperatures 
of the fluids are marked as Ta, t,, Tb, lb, Tc, t,, Td and 
t,,, respectively. By means of the above dimensionless 
variables and parameters, the governing equations 
can be derived for each subregion. For subregion a, 
the energy balance yields 

UA,q(Ta-Q= +l)‘&$ (i= 1,2,...,m) (4) 
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These two equations can be reformed as 

dt 
G= &(-~)‘E~NTU~(T,-~,J (i= l,L...,m) (6) 

(7) 

Noting ri/, = ri/,, one can also obtain equations per- 

tinent to subregion b 

hi ~ = +(-I)~E;NTU,(T,--ft,,) 
dx 

Similarly, in subregion c the governing equations are 

-w 
km --- 

-------__--__ 

iBm+’ i-m+2 ~--_t--_--- 
I d b 

dt 
2~ &(-I)iE,NTUz(T,-t,i) (i= I,Z!,...,m) (10) 

dT, ---Z -~&+~T, fci. (11) 
dx crl i= I 

In subregion d there are the following equations : 

dt,, 
.dx = * (- 1)‘Ej NTU2(Td - hi) 

G=mfl,m+2,...,N) (12) 

dT, -= F._; ~;t~~- ylTd 2 q (13) 
dx crm+l c r=m+ I 

where the positive sign (+) and the negative sign (-) 
of the sign (+) in the above-mentioned equations are 
valid for tube flow pattern I and tube flow pattern II, 

respectively, which are shown in Fig. 1. 

Obviously, there are (2N+4) ordinary linear 
differential equations with constant coefficients. These 

WP 

ei- 

------- 
i=N 1 w2 

L----- 
. _ i=N > 

w, -,- w, d, hjvc =,- li& 
I L 

-L 2 I m. n + L2 _cI m. n 
t_- x tw, even 

I- x +ti, odd 

(a) tube flow pattm 1 

n 

(b) tube flow pattern n 

FIG. 1. Thermal scheme of 1 -N split-flow heat exchanger. 
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Table 1. Boundary conditions for r(x) 

x=0 x = 1 
Tube flow pattern 

I II 

*, = L, I = L;+ 3 L = La 1 = L&i+ $ id”(O) = 0 &lm = 0 
i=2,4,...,m-2 i= 1,3,...,m-1 

m,fl 
even 

Ci, = LA+ I = L%.i+ I lb, = hw+ I = lb,.,+ I 

i=mf2,m+4,...,N-2 i=m+l,m+3,...,N-1 

&t = fc*+ 1 = ~cii+ 1 t,, = I,;, ) = Li,i+ / 4m = 0 fci@~ = 0 
i=2,4,...,m-1 i= 1,3,...,m--2 

m, n 
odd 

fdi = h+ I = hi,,+ I 47, = fLv+ 1 = 4x.,+ 1 

i=m+l,m+3,...,N-2 i=m+2,m+4,...,N-I 

Table 2. Interface conditions for t(x) 

x=x, = L,/L x = x, = L,IL 
m,n 
even 

m,n 
odd 

t,, = t,, 67, = Lb 
i= 1,2....,m i=mf1.m+2,...,N 

L(O) = &I+ l(O) L(I) = hII+ E(l) 

equations are a conjugal system through interface 
conditions. To solve this system of differential equa- 
tions (2N-k4) determinant conditions are necessary. 
Tables 1-3 give the related (2Nf4) conditions. 

In principle, the solution of these (2N+4) differ- 
ential equations with such (2N+4) determinant con- 
ditions is very tedious. Fortunately, all equations are 
homogeneous and we can readily solve this system of 
equations by means of linear algebra [6]. The matrix 
notation is introduced to express the system briefly. 
For subregion a, equations (6) and (7) can be written 
as 

Et& 
dx 

A (14) 

where T, = (th,, ta2,. . , t,,“, Ta)T and A is a constant 
coefficient matrix with order (m+ I), the elements of 
which are given as follows : 

0 i#j i,j= 1,2 ,..., m 

aii = f(-l)‘+kiNTU, i=j i,j= 1,2 ,..., m 

+ (- I)‘&< NTUz j=m+l i= 1,2,...,m 

ai, = 

j= 1,2,...,m 

i=m+l. 

Similarly, for subregion b 

Table 3. Boundary and interface conditions for T(x) 

x=0 x=x, = LJL x=1 

7’, = Td T, = 1.0, T, = I.0 T, = T, 

dT, 
---=BTB 
dx (15) 

where T, = (tbmi ,, tbms z,. . . , tbN, Tb)l and B is a con- 
stant coefficient matrix with order (n+ l), the elements 
of which are given as follows : 

b, = 

-0 i#j 

i,j=mfl,m+2 ,..., N 

i(-1) “‘E,NTU~ i=j 

i,j=m+l,m+2 ,..., N 

+(-l)kiNTU2 j=N+l 

i=m+l,m+2,...,N 

NT-U, - ---__f 
Ba j 

j=m+l,mi2,..., N 

NTU, N 
i= N+l. 

--c 
I% k=m+I 

ck j=N+l 

For subregion c 

dTc __ = CTc 
dx (16) 

where Te = (t,,, tcZ,. . . , t,,, T,)’ and C is a constant 
coefficient matrix with order (m+ I), the elements of 
which are given as follows : 

0 i#j i,j= 1,2 ,...,m 

ci, = +(-l)‘+‘qNTU2 i=j i,j= 1,2 ,..., m 

+(-l)%iNTUz j=m+l i= 1,2,...,m 
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c NTU, 
--& n I j= 1,2 ,...,m 

For subregion d 

dT, --=DT, 
dx (17) 

where T, = (tdm+ ,, td,+ *, , fdN, TJT and D is a con- 
stant coefficient matrix with order (n + l), the elements 
of which are given as follows : 

0 i#j 

i,j=m+l,m+2 ,..., N 

di, = 
f(-l)‘+‘siNTU2 i=j 

i,j=m+l,m+2 ,..., N 

+ (- 1)‘~~ NTUz j = N+ 1 

i=m+l,m+2,...,N 

NTU, 
TCJ j=m+l,m+2,...,N 

dii = NTU, N 
-__ 

Bc ,=;+,&k jsN+l 

i = N+ 1. (18) 

Now we will search a general solution matrix for 
each subregion by means of eigenvalues and eigen- 
vectors. Assuming E exp (1,x) to be a solution of 
subsystem (14) one can obtain 

1,Eexp (1,x) = AEexp (1,x). (19) 

Since exp (1,x) # 0, so that 

(A-&I) E = 0. (20) 

In order to obtain a non-zero solution for vector E, 
there must be 

det (A - &I) = 0. (21) 

This is a polynomial equation of degree (m + 1) in 1,, 
and hence there are (m+ 1) roots A,, (i = 1,2,. . , 
m+ l), which are called eigenvalues of A, and the 
corresponding E, (i = 1,2,. . , m+ 1) are called 
eigenvectors of A 

E, = (e,,,e,,,...,e,+,,,)‘. (22) 

Similarly, for subsystem (15) there are (n + 1) eigen- 
values lbi and corresponding eigenvectors F, (i = 
m+l,m+2,...,N+l) 

F, = CL+ ,,i> fm+~,,r . . 3 f,+ ,,JT. (23) 

For subsystem (16) there are (m+ 1) eigenvalues & 
as well as eigenvectors Gi (i = 1,2, . . . , m + 1) 

G, = (s,i> g2,,. . , gm+ ,,JT. (24) 

Finally, derivation of subsystem (17) gives (n+ 1) 
eigenvalues ldi and corresponding eigenvectors Hi 
(i=m+l,m+2,...,N+l) 

Hi = @m+ ,,i,hn+z.i,. . ,h+ AT. (25) 

If all these eigenvalues are distinct in each subsystem, 
respectively, temperature vectors to be determined can 
be expressed as 

m+l 
T, = c e,E,exp (1,x) 

j=l 

N+I 

(26) 

TB = 1 I&W (1,x) 
,=n+ I 

IF+1 

(27) 

Tc = C g/GjexP (&,x> 
,=1 

N+I 

(28) 

T, = c h,H, exp (Idjx). 
,=m+ I 

(29) 

The combination of equations (26)-(29) constructs a 
general solution for the 1 -N split-flow heat ex- 
changer. However, it must be emphasized that equa- 
tions (26)-(29) may fail if there occur multiple eigen- 
values. In this case, these equations must be corrected. 
If there is an eigenvalue A,, of multiplicity k in sub- 
system (14), for example, a solution of the following 
form is suggested [7] : 

Y = G(x) exp (&,x) (30) 

where G(x) is a polynomial of degree k, given by 

O(x) =P,+p,x+p,x2+...+p,xk-‘. (31) 

Insertion of equation (31) in subsystem (14) yields 

(A-~,iI)(p,+p,x+p,x2+...+pkXk-‘) =p2 

+2p,x+...+(k-l)pkXk-2. 

In order for this equation to be valid for all X, we 
equate coefficients of x and obtain 

(A--&I)!‘, = 0 

(A-&&‘- I = (k-lb, 

(A-M)P,-, = 6-%k-, 

(A-U)P, =PZ. (32) 

Since det (A-&I) = 0, the remaining non-homo- 
geneous system can be solved, provided that the rank 
of (A -&,I) is equal to the rank of the augmented 
matrix formed by (A - &,I) with non-homogeneous 
terms in equation (32). From a set of vectors 
[p,,p2,. . . ,pk], the following solutions can be con- 
structed : 

Y, = P I exp GW 

Y2 = GJ 1 +P*x) exp (Lx) 

Yk = (PI +p2x+.“+pkXk-‘)exp(~,ix) (33) 

which are also solutions of subsystem (14). With 
the solutions related to other distinct eigenvalues 
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laj, a general solution for subsystem (14) can be con- 
structed by a linear superposition. To do this, E, 

(j = i, i+ 1,. ) i+ k) in equation (26) will be replaced 
by Y, (j = 1,2,. . ,k), respectively. In this way one 
can readily solve the problem with multiple eigen- 
values. In the following analysis we will concentrate 
on the case where all eigenvalues are different. The 
procedure for the case with multiple eigenvalues is 
similar. 

The (2N+4) constant coefficients e,, fl, gj and h, in 
equations (26)-(29) must be determined according to 
the given boundary and interface conditions in order 
to find the particular solution for the original 
problem. Regarding the conditions in Tables l-3, a 
matrix equation for determining these coefficients can 
be written as 

QZ=S (34) 

where Z, S are vectors with (2N+4) elements 

Z= (e,,e,,...,e,+,,f~+,,.f,+,,...,f,+,, 

gl>g2,...rgm+l, hn+l,hm+*,...,hN+I)T 
S=(O,O ,...) O,l.O,l.O)T 

if the inlet boundary conditions for the shellside fluid 
at x = x, are taken as the last two equations. 

Matrix Q of order (2Nf4) has elements which 
depend on factors, such as the multiplicity of eigen- 
values, the tubeside flow pattern, the number of tube 
passes and the entrance and exit locations of the shell- 
side flow. If all eigenvalues are distinct (generally, it 
is so), m and n are even numbers and the tubeside flow 
pattern is the same as that shown in Fig. l(a), elements 
q,, can be described as 

(ekk,,-ekk+ !., )exp(i,,) 1 <j<m+l 
qk, = 0 m+2 Q j < 2N+4 

k= 1,2,...,m/2 

where kk = 2k - 1 

m-h2 Gj< N-t2 

other j 

wherekk=2k-1 andjj=j-1 

gkk,,, -gkk+l,,, N+3 <j < N+m+3 
qk, = 0 other j 

N+m 
k=;+l,;+2,...,y - 

wherekk=2k-Nandjj=j-N+2 

h W/ - hkk + 1.~1 N+m+4 <j i 2N+4 
qk, = 0 other j 

N+m N+m 
k=2-,2+1,...,N-2 

wherekk=2k+2-Nandjj=j-N-3 

r 

ekk.I exp &lx I> 1 dj<m+l 

qk, = -gkk.jlexp(&,,x~) N+3 <j< N+m+3 

0 other j 

k= N-l,N,...,N+m-2 

wherekk=k-N+2andjj=j-N-2 

1 

fkk.,_,exp(~,_,x,) m+2,<jiN+2 

qk, = - hk,ll exP (&,,X I) N+m+4 <j < 2N+4 

0 other j 

k= Nfm-l,N+m,...,2N-2 

wherekk=k-N+2andjj=j-N-3 

1 

SW I N+3 <j< N+mf3 

qk, = -h ,,,+ ,,,* N+m+4 <j < 2Nf4 

0 other j 

k=2N-1 

1 

cm+ ,,, exp (LA 1 <j<m+l 

qkj = -_h+ I,, I exp(&,,) m+2<j< N+2 

0 other j 

k=2N 

where jl = j-N-2 and j2 = j-N-3 

i 

Sm+ I,jl N+3 <j< N+m+3 

qkj = -h N+ ,,,2 N+mt4 <j < 2Nt4 

0 other j 

k=2N+l 

where jl = j-N-2 andj2 = j-N-3 

1 

h N,,, N+m+4 <j G 2N+4 
qk, = 0 other j 

k=2N+2 

wherejj = j-N-3 

em+,,jexP(&jxJ 1 <j<m+l 
qk, = 0 other j 

k=2N+3 

C.F.I~+~.,,~~P&,,~J N+3 G.iG N+m-?-3 
qki = 

I 
0 

k=2N+4 

wherejj = j-N-2. 
Therefore, all constant coefficients can be deter- 

mined from 

Z=Q-‘S (35) 

where Q- ’ is the inverse of matrix Q. 
On finding all coefficients, one has determined the 

particular solution subject to the determinant con- 
ditions given by Tables l-3, so that intermediate 
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temperatures and the thermal effectiveness P, can be 
readily obtained. Intermediate temperatures in four 

subregions are given as follows : 

WI+1 

tai,i+ I = tai(x = 1) = C e,e, exp (A,) 
j= I 

i= 1,3,...,ml 

N+I 

tbi,i+, = tb,(x = l) = c Af;jexp(lb,) 
,=m+ 1 

i=m+I,m+3,...,Nl 

It+1 
t++, =tJx=O)= C gjgv i=2,4 ,.... m2 

,= I 

N+I 

t dl,r+ I = tdt(x = O> = 1 jjh,j 

j=m+ I 

i = m+2,m+4,. . 

where 

ml = 
m-l evenm 

m2= 
m-2 

m-2 oddm m-l 

Nl = 
N- 1 even N N-2 

N-2 oddN 
N2 = 

N-l 

,N2 (36) 

even m 

odd m 

even N 

odd N. 

The final dimensionless outlet temperature of the 
shellside fluid is described by 

N+I 

+bcTd(X*) = 8, C f; fN+ I,j exP (&ix*) 
j=m+ I 

.++I 

+I$ 1 h,h.w+ I,j exp (&,xd. (37) 
j=m+ I 

With the relationship T” = 1 -PI, one has 

P, = 1 -T” = 1= -/IaTb(x2)-/IcTd(xZ). (38) 

Therefore, the thermal effectiveness of the 1 -N split- 
flow exchanger P, is calculated from 

p* = (l-BaTb(x*)-Bcr,(x,))~,. (39) 

By means of the final dimensionless temperature 
change of the tubeside fluid, P, can be also expressed 
as 

P2 = 

1 

m+, 

t,,(O) = 1 9,911 tubeside flow pattern I 
,= I 

N+I 

tdN(“) = 1 hjhNj tubeside flow pattern II. 
j=m+ I 

(40) 

Furthermore, the log mean temperature difference 
correction factor F = At,/At,,, for the split-flow ex- 
changer can be determined by 

0.6 

p, 

0.4 

0.0 
0.0 0.2 0.4 P 0.6 0.6 1 .o 

I 2 

FIG. 2. l-2 split-flow heat exchanger (E, = E* = 0.5) with 
tube flow pattern I. 

ln l--P* 
1 -P,R, 

F = NTU,(R,- 1)’ 
(41) 

So far, we have derived all formulas needed for the 
thermal calculation of the split-flow exchanger with an 
even number N of tube passes. The solution for odd 
N can be readily obtained in the same way. 

3. CALCULATION EXAMPLES 

Utilizing the previous formulas, we have executed 
a few calculation examples. The results are plotted in 
P,-P2 diagrams, which show curves with constant 
NTU and F. Figure 2 gives the thermal performance 
of a two tube pass split-flow exchanger with tube flow 
pattern I at the known parameters, such as fi, = 
0.5, L,/L = L,/L = 0.5 and E, = .s2 = 0.5. Figure 3 

0.6 

p, 2 

0.4 

0.0 
0.0 0.2 o.4 p2o.” 0.8 1 .o 

FIG. 3. 1-2 conventional heat exchanger (E, = 0.5, Ed = 0.5). 
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0.6 

PI 2 

0.4 

0.0 
0.0 0.2 0.4 

PP." o.8 '.O 

FIG. 4. l-4 split-flow heat exchanger (E, = E* = ej = E~ = 
0.25) with tube flow pattern I. 

shows the thermal performance of two tube pass 
conventional exchangers at the known parameters 
E, = E, = 0.5. Comparing these two figures, one can 

realize that the thermal effectiveness P2 of the split-flow 
exchanger will increase with NTU and the thermal 
effectiveness of the conventional exchanger almost 

ceases to increase with NTU, when NTU > 3.0. With 
the same value of the logarithmic mean temperature 
difference correction factor F, there are greater values 
of P, for the split-flow exchanger. Figure 2 also illus- 
trates that there is no peak value for the thermal 
effectiveness P2 even at greater values of NTU, which 

is different from the thermal behaviour of the divided- 
flow exchangers [8]. NTU and Fcurves for a 111 split- 
flow exchanger are plotted in Figs. 4 and 5. Obviously, 

the slopes of these curves vary with tube flow patterns. 

0.8 

0.6 

PI 2 

0.4 

0.0 
0.0 0.2 0.4 p 0.6 0.8 1.0 

2 

FIG. 5. 1-4 split-flow heat exchanger (E, = Ed = E, = e4 = 

0.25) with tube flow pattern II. 

The thermal performance of the split-flow exchanger 
with tube flow pattern I is considerably higher than 
that of the same type of exchangers with tube flow 
pattern II, because the former can efficiently utilize 
the temperature difference between the shellside fluid 
and the tubeside fluid. Therefore, tube flow pattern 11 

should be avoided. It is worth pointing out that the 
reverse heat transfer may take place in l-4 split-flow 
exchangers, when NTU > 5.0. This phenomenon is 

not expected and designers should pay attention to it. 
Figure 6 shows constant NTU and F curves for a l-6 
split-flow heat exchanger with tube flow pattern 1. 

Comparison among Figs. 2,4 and 6 reveals that two, 
four and six tube pass exchangers have nearly identi- 
cal thermal performance, when NTU < 4.0. In design, 

conventional shell and tube exchangers with even 
N are usually treated as l-2 exchangers. Obviously, 

the same design rule can be applied to split-flow 

exchangers. 

4. PRESSURE DROP 

In a heat exchanger with the split-flow pattern, the 
pressure drop on the shellside will be dominated by 

the distribution of the shellside fluid. Without con- 
sideration of the influence of baffles, this pressure drop 
can be approximately described as [9] 

WZL, 
AP,--- 

d 

where 

1 laminar 

a = 1.75 turbulent 

and L, is the flow length of a pass. Usually, the press- 
ure drop on both shellside flow paths in the split-flow 
exchanger should be equal to each other, i.e. 

1.0 

0.8 

0.6 

PI 

0.4 

0.2 

FIG. 6. IL6 split-flow heat exchanger (E, = 0.2, E* = cj = 
0.15, c4 = 0.2, Ed = .Q = 0.15) with tube flow pattern I. 
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AP, = AP,,+AP,, = AP,,+AP,,. (43) 

If the equivalent transverse diameter of the shell flow 
tunnel over the longitudinal baffle equals that of the 
shell flow tunnel below the baffle, one can have 

@(L-L,)+e(L-L,) = %L, + IQ&. (44) 

Rearrangement of equation (44) yields 

pa = 1+(&_1~ (45) 

which means that the division of the shellside flow is 
not arbitrary once the entrance and exit locations of 
the shellside fluid have been chosen, if equation (43) 
holds. 

In a conventional shell and tube exchanger with N 
tube passes, the pressure drop on the shellside can be 
described as 

AP:= cwg_ (46) 

Comparing equation (43) with equation (46) one has 

+!L AP,, + AP,b 
AP:- u*t . (47) 

D 

In general, the longitudinal baffle divides the whole 
transverse flow tunnel of the shellside flow into two 
equal parts in the split-flow exchanger, so that the 
equivalent transverse diameter of the tunnels for l&8 
and ri/, can be expressed as 

J2 d=2D (48) 

therefore, equation (47) can be rewritten as 

$*= J2/?:(2-x,-x,). (49) 
s 

Insertion of equation (45) into equation (49) gives 

(50) 

Undoubtedly, the right-hand side of equation (49) or 
(50) is less than 1.0, which signifies that the shellside 
pressure drop in the split-flow exchanger is smaller 
than that in the conventional shell and tube exchanger 
of the equal whole thermal flow rate on the shellside. 

In general, the distribution of the shellside fluid will 
result in the variation of the overall heat transfer 
coefficient U. To simplify the discussion, we will think 
about the following two extreme cases : 

(1) If the major heat transfer resistance lies on the 
tubeside, the overall heat transfer coefficient can be 
considered to be independent of the division of the 
shellside fluid. In this case the influence of the dis- 
tribution change of the shellside fluid upon the overall 
heat transfer coefficient can be neglected and equation 

(49) or (50) can be directly used to analyse the shell- 
side pressure drop in the split-flow exchangers. 

(2) If the heat transfer resistance on the shellside 
is controlling, the overall heat transfer coefficient is 
approximately equal to the heat transfer coefficient 
on the shellside and will vary with the distribution of 
the shellside fluid. Assuming that the shellside flow is 
turbulent, one can have the formula to calculate the 
shellside heat transfer coefficient [lo], which approxi- 
mates the overall heat transfer coefficient 

u = c h wO-6. (51) 

In the split-flow exchanger the heat transfer area is 
divided into subregions a, b, c and d, by means of 
thermal flow rate, the overall UA can be described as 

(UA) = (UA),+(UA),+(UA),+(UA), 

In a conventional shell and tube exchanger with the 
same value of the shellside thermal flow rate ci/, and 
of the overall heat transfer area A as the split-flow 
exchanger, one has 

(53) 

Comparison of equation (52) with equation (53) 
yields 

UA NTU, -=-= 
(UA)* NTUt 

0.6156(/I,” 6(2-x, -x1) 

+(I -Ba)O %I -tx*)). (54) 

Equation (45) can be inserted in equation (54), if 
relationship (43) is held. One should combine equa- 
tion (54) with equation (49) or equation (50) to esti- 
mate the merits of the split-flow exchanger, if the heat 
transfer resistance on the shellside is crucial. 

5. OPTIMUM ENTRANCE AND EXIT 

It is clear that the thermal effectiveness of the split- 
flow exchanger varies with the entrance and exit 
locations of the shellside fluid. We will take a l-2 
split-flow exchanger as an example to discuss the 
influence of the entrance and exit locations upon the 
thermal effectiveness. According to the previous pro- 
cedure, one can readily obtain the formula for cal- 
culating the thermal effectiveness of a l-2 split-flow 
exchanger with tube flow pattern I at arbitrary 
entrance and exit locations of the shellside fluid as 
well as arbitrary /3. 



872 B. SPANG et al. 

(55) 

where 

p1 = l-pZexp(&x,) 

l-r 
P2 = 

~(1 - exp (Lx, 1) - 
s+exp (1,) -exp (&.x1) 

u 

exp (4~ I 1 
exp (Ax I > 

It must be emphasized that equation (55) should fail, 
if i, = 0 or & = 0. From equation (55), one can deter- 
mine the optimum entrance and exit locations of the 
shellside fluid at which thermal effectiveness P, will 
reach the maximum value. To do this, one should 
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FE. 7. Thermal efkctiveness YS x, (m = n = 1, NTC', = 1 .O, 
x2 = 1 -x,) with tube flow pattern I. 

1.0 

0.9 

0.8 

0.7 

0.6 

‘0.5 

0.4 

0.3 

0.2 

0.1 

0.0 
010 0:1 0:2 0:3 0:4 0:; 016 0:7 01s 019 l:o 

1 

FIG. 8. Thermal effectiveness v’s xl (m = n = I, NTU, = 2.5, 
x2 = 1 -xl) with tube flow pattern I. 

take equation (45) as a constraint, if equation (43) is 
observed. 

We have carried out some preliminary calculations, 

considering the following two relationships between 
the entrance location x1 and exit x2, respectively, i.e. 
x2 = 1 - x , or x2 = x,. The calculation results are 
plotted in Figs. 7-10, which show that the thermal 
effectiveness P, reaches the maximum at x, = x1 = 
0.5. In other words, the entrance and exit of the 
shellside fluid should be located in the middle of the 

split-flow exchanger to obtain the maximum thermal 
effectiveness. Figure 10 is made pertinent to the 
case that the heat transfer resistance on the shell- 
side is a limiting factor. Comparing Fig. 7 with Fig. 
9, one can easily find that heat transfer in the split- 
flow exchanger will greatly degenerate if x, = x2, with 

FIG. 9. Thermal effectiveness vs x1 (m = n = 1. NTU, = 1.0, 
x2 = x ,) with tube flow pattern I. 
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FIG. 10. Thermal effectiveness vs x, (m = n = 1, NTU: = 
1.0, x1 = 1 -x,) with tube flow pattern I. 

the exception of the point x, = x2 = 0.5. With 
increase of NTU, the influence of the entrance and 
exit locations of the shellside fluid will become greater, 
so that designers should pay much attention to the 
reasonable choice of the parameters x, and x2 to 
obtain the optimum thermal effectiveness. 

6. CONCLUSION 

(1) Equations are derived for predicting tem- 
perature at a given location on the heat transfer sur- 
face and the thermal effectiveness of 1 -N split-flow 
exchangers. 

(2) For low values of NTU, the thermal per- 
formances of split-flow exchangers and of conven- 
tional shell and tube exchangers are almost identical, 

but the split-flow exchanger becomes thermally more 
efficient as NTU increases. With further augmentation 
of NTU, the reverse heat transfer may occur in the 
split-flow exchanger. The shellside pressure drop in 
the split-flow exchanger is smaller than that in the 
conventional shell and tube exchanger with the same 
total thermal flow rate m, and the same length L. 

(3) When the entrance and exit of the shellside fluid 
are located in the middle of the split-flow exchanger, 
the thermal effectiveness will reach the maximum. 
With increasing NTU, the influence of the entrance 
and exit locations upon the thermal effectiveness 
becomes greater. The arrangement x2 = 1 -x, is 
better than the arrangement x2 = x, and in the 
latter case the heat transfer will be deteriorated, except 
at x, = x2 = 0.5. 
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PERFORMANCES THERMIQUES DES ECHANGEURS A ECOULEMENT SEPARE 

R&nn&Une analyse est developpee pour les echangeurs thermiques a ecoulement s&pare avec un nombre 
pair de passes en tube, des positions de l’entrie et de la sortie de l’ecoulement dans la calandre, une division 
arbitraire de l’tcoulement et un NTU variable. Une solution analytique est present&e pour le calcul de la 
temperature et un point quelconque et l’efficacite thermique. La performance thermique de cet echangeur 
est comparee a celle d’un ichangeur conventionnel. La perte de pression du cot& de la calandre est discutee 
ainsi que les emplacements de l’entree et de la sortie de l’ecoulement en calandre dans ce type d’echangeur. 

THERMISCHE LEISTUNG VON ROHRBUNDELWARMEUBERTRAGERN MIT 
GETEILTEM MANTELSTROM UND LANGSUMLENKBLECH 

Zusammenfasaung-Das thermische Verhalten des Rohrbiindelwlrmeiibertragers mit geteiltem Mantel- 
Strom und Llngsumlenkblech wird untersucht. Dabei diirfen mantelseitige Ein- und Austrittsstutzen 
beliebig liegen und die Aufteilung des Mantelstroms ist variabel. Fiir die Berechnung der Temperaturprofile 
und der thermischen Leistung wird eine geschlossene Losung angegeben. Die thermische Leistung dieses 
Wirmeiibertragertyps wird mit der des normalen Rohrbiindelapparates verglichen. Augerdem werden der 
mantelseitige Druckverlust und die optimale Lage der mantelseitigen Ein- und Austrittsstutzen genauer 

untersucht. 
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~~~~Bo~c~ TepMarecgaii awn43 ~H0r0~0~0~bfx Te~oo6Me~oB c %s-ii~ YRC~OM 

~~6~blXXO~OB,~BB3BO~HblM~RO~O~eHHeM BXOna H BbKxOg;aBHerWerO IlOTOKCi, KQ'KM3BOJIbHblM 
era AeneHHehi s3 mkiemmzxiimcn noTemm.nahm nepeiioca. lTpencrameH0 peureme B 3ahmsy~oie 

4opMe ws pacwra TemepaTypu npn 3anaiiiiow pacnonorceimi H ~.n.n. Cpammaimcx TemoBhlt: 

XapaKTepHcTHKH MHO~~~~JJOB~I~ TeIIJIOO6MeHHHKOB H 06w1aoro KO)X~XOT~~~HOI-O. 06CyrcgamTCn 

nepenam aannemx B ronyxe, a Tame 0nTHhiaTIbHoe pacnonoxewie nxona H mxona nneuuiero 


